
HAL Id: hal-01643290
https://hal.inria.fr/hal-01643290

Submitted on 21 Nov 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

CompCert: Practical Experience on Integrating and
Qualifying a Formally Verified Optimizing Compiler

Daniel Kästner, Jörg Barrho, Ulrich Wünsche, Marc Schlickling, Bernhard
Schommer, Michael Schmidt, Christian Ferdinand, Xavier Leroy, Sandrine

Blazy

To cite this version:
Daniel Kästner, Jörg Barrho, Ulrich Wünsche, Marc Schlickling, Bernhard Schommer, et al.. Com-
pCert: Practical Experience on Integrating and Qualifying a Formally Verified Optimizing Com-
piler. ERTS2 2018 - Embedded Real Time Software and Systems, Jan 2018, Toulouse, France. 2018,
<https://www.erts2018.org/>. <hal-01643290>

https://hal.inria.fr/hal-01643290
https://hal.archives-ouvertes.fr


CompCert: Practical Experience on Integrating and Qualifying a
Formally Verified Optimizing Compiler

Daniel Kästner3, Jörg Barrho4, Ulrich Wünsche4, Marc Schlickling4,
Bernhard Schommer5, Michael Schmidt3, Christian Ferdinand3,

Xavier Leroy1, Sandrine Blazy2,

1: Inria Paris, 2 rue Simone Iff, 75589 Paris, France
2: University of Rennes 1 - IRISA, campus de Beaulieu, 35041 Rennes, France

3: AbsInt Angewandte Informatik GmbH. Science Park 1, D-66123 Saarbrücken, Germany
4: MTU Friedrichshafen GmbH, Maybachplatz 1, D-88048 Friedrichshafen, Germany

5: Saarland University, Saarland Informatics Campus, Saarbrücken, Germany

Abstract
CompCert is the first commercially available optimiz-
ing compiler that is formally verified, using machine-
assisted mathematical proofs, to be exempt from mis-
compilation. The executable code it produces is proved
to behave exactly as specified by the semantics of the
source C program. This article gives an overview of
the use of CompCert to gain certification credits for a
highly safety-critical industry application, certified ac-
cording to IEC 60880 [7]. We will briefly introduce the
target application, illustrate the process of changing the
existing compiler infrastructure to CompCert, and dis-
cuss performance characteristics. The main part focuses
on the tool qualification strategy, in particular on how
to take advantage of the formal correctness proof in the
certification process.

1 Introduction
A compiler translates the source code written in a given
programming language into executable object code of
the target processor. Due to the complexity of the code
generation and optimization process compilers may
contain bugs. In fact, studies like [23, 5] and [25] have
found numerous bugs in all investigated open source and
commercial compilers, including compiler crashes and
miscompilation issues. Miscompilation means that the
compiler silently generates incorrect machine code from
a correct source program.

In safety-critical systems miscompilation is a serious
problem since it can cause erroneous or erratic behavior
including memory corruption and program crash, which
may manifest sporadically and often is hard to identify
and track down. Furthermore many verification activi-
ties are performed at the architecture, model, or source
code level, but all properties demonstrated there may

not be satisfied at the executable code level when mis-
compilation happens. This is not only true for source
code review but also for formal, tool-assisted verifica-
tion methods such as static analyzers, deductive veri-
fiers, and model checkers. In consequence, many safety
standards require additional, difficult and costly verifi-
cation activities to show that the requirements already
shown at higher levels are also satisfied at the executable
object code level.

Since 2015 the CompCert compiler has been com-
mercially available. CompCert is formally verified, us-
ing machine-assisted mathematical proofs, to be exempt
from miscompilation issues. In other words, the ex-
ecutable code it produces is proved to behave exactly
as specified by the semantics of the source C program.
CompCert is the first formally verified compiler on the
market; it provides an unprecedented level of confidence
in the correctness of the compilation process. In general,
usage of CompCert offers multiple benefits. First, the
cost of finding and fixing compiler bugs and shipping
the patch to customers can be avoided. The testing effort
required to ascertain software properties at the binary
executable level can be reduced since the correctness
proof of CompCert C guarantees that all safety prop-
erties verified on the source code automatically hold as
well for the generated executable. Whereas in the past
for highly critical applications (e.g., according to DO-
178B Level A) compiler optimizations were often com-
pletely switched off, using optimized code now becomes
feasible.

In [19] we have given an overview of the design and
the proof concept of CompCert and have presented an
evaluation of its performance on the well-known SPEC
benchmarks. In this article we report on practical ex-
perience with replacing a legacy compiler by CompCert
for a highly critical control system from MTU in the nu-

1



clear power domain.
The article is structured as follows: in Sec. 2 we give

an overview of the MTU application for which Comp-
Cert is used; Sec. 3 describes the relevant considera-
tions for applying a traditional non-verified compiler.
In Sec. 4 we briefly summarize the CompCert design
and its proof concept. Sec. 5 describes the integration of
CompCert into the development process, and the perfor-
mance gains observed. The tool qualification strategy is
detailed in Sec. 6, Sec. 7 concludes.

2 The Application
MTU develops diesel engines that are deployed in civil
nuclear power plants as drivers for emergency genera-
tors to generate electrical power. Such engines are avail-
able to the market diversely as either common rail or
fuel rack controlled engines with capabilities to produce
up to 7 MW electrical power per unit.

In case of failures in the electrical grid of a nuclear
power plant one or more of these units are requested to
provide power to support the capability to control the
nuclear plant core and cooling systems. It is obvious
that the functional contribution may be mission critical
to the overall plant.

The engines are controlled by an MTU-developed dig-
ital engine control unit (ECU). This ECU performs only
safety functions and in particular maintains the safe state
requested by the plant operator. This safe state ensures
that the engine stands still if required and is controlled
to maintain the demanded engine speed if required.

Software decomposition The software of the ECU
runs on top of a handwritten runtime environment, writ-
ten in assembler, specific to the controller in use. The
application consists of handwritten C-code and gener-
ated C-code derived from SCADE models.

The handwritten C-code implements a scheduler, a
hardware abstraction layer, and self-supervision capa-
bilities. The hardware abstraction layer polls physical
sensor inputs, controls hardware actuators, and provides
hardware related self supervision mechanisms which
must not interfere with the two former objectives in
fixed timing intervals. Such fixed intervals must be
small enough to acquire all relevant events and to main-
tain sensor acquisitioning sampling theorems.

The scheduler provides safe data and control flow
interfacing between the concurrent hardware access
thread and the main control loop. Such interfacing lim-
its the amount of required race condition considerations
and allows for maintaining safe timing constraints of the
threads. Based on safe over approximations of timing
envelopes it is possible to prove that all scheduling con-
straints are always maintained.

The SCADE model provides the engine controller al-
gorithms. The monolithic model strictly follows the
synchronous paradigm by separating input acquisition,
processing and generating output. The entire model ex-

ecution is provided in SCADE which is a prerequisite to
make further statements on the model integrity.

Development constraints Software and develop-
ment process comply with the international standards
IEC60880 [7] and IEC61508:2010, part 3 (SCL3 for
software) [8].

C was chosen as programming language because of
the abundant availability of translators for the targeted
PowerPC architecture. Code generators from model
driven approaches to C are well introduced and the
SCADE generator is validated to translate correctly to
a defined language subset.

C subset All C-code is produced in a subset of
ISO/IEC9899:1999 [9]. Its capability is sufficient for
all of the outlined application requirements. This ver-
sion of the standard is considered so widely used that
the standard and its deficiencies are well understood and
compilers are more likely to fully comply.

Emphasis is put on the objective to enhance robust-
ness, to provide exactly one method to solve a prob-
lem and to avoid potentially error-prone constructs. The
MISRA:2004 [22] standard is a good starting point for
choosing such a language subset. In addition continuous
research on actual and potential coding defects has been
considered. Lastly the subset is formed by complement-
ing cultural development among users and testers of the
application in question in a structured process.

With each programming project an assessment of
perceived risks regarding frequency, potential conse-
quences and chances of detection is carried out. During
development, continuous discussions are encouraged to
support risk consciousness.

All of these risk considerations are condensed into a
set of in-house coding guidelines also reflecting the cur-
rent project team’s language proficiency.

Data types are basically restricted to the use of inte-
ger arithmetics with as few type conversions as possible.
Thus compiler behavior is as explicit as possible mend-
ing some of the inherent type unsafety of C. Enums,
unions and bit fields are not part of the language sub-
set. The language subset is also designed to be well
covered by automatic checking tools. The sound static
runtime error analyzer Astrée [19, 16] also includes a
coding guideline checker, called RuleChecker, which is
suitable for the subset chosen.

For the defined specific rule set it provides a coding
guideline coverage of more than 85 %. The remaining
15 % are inevitably attributed to such objectives requir-
ing human involvement as to avoid tricky programming,
to choose understandable identifier names and to pro-
vide helpful comments.



Figure 1: CompCert Workflow

3 The Past: Using a Non-Verified
Compiler

Compiling source code which becomes part of safety
software in production use is inherently flagged as a crit-
ical task. For such critical tasks a tool must be quali-
fied as suitable by fulfilling a number of criteria defined
by the user. MTU only uses critical tools in safety ap-
plications if such a tool has been developed within a
structured process. It must provide sufficient evidence
for reliable operation and user experience must have a
positive record. MTU’s tool qualification strategy is de-
picted in Fig. 2.

St
ru

ct
ur

ed
D

ev
el

op
m

en
t

U
se

r
E

xp
er

ie
nc

e

V
al

id
at

io
n

/
V

er
ifi

ca
tio

n

Tool
Qualification

Figure 2: MTU tool qualification strategy

Historically MTU has used a traditional commercially
available C-compiler well proven in use. Use of this
compiler requires some maintenance effort due to the
sporadic appearance of new bugs. Each of these bugs
requires evaluation and eventually code changes and
changes of code review checklists for fully standard
compliant source code.

When such a proven in use compiler is removed from
standard supplier support there are two options. The
supplier may offer the service to check if bugs in later
compiler versions already existed in the used version.
However the supplier may charge substantial fees for

such service. Alternatively the user may decide to qual-
ify a newer compiler version with a commercial valida-
tion suite. This also induces substantial effort and exter-
nal costs. Neither of these alternatives is satisfactory.

4 The CompCert Compiler
In the following we will give a brief overview of the de-
sign and proof concept of CompCert; more details can
be found in [19]. Fig. 1 shows the CompCert-based
workflow. The input to the compilation process is a
set of C source and header files. CompCert itself fo-
cuses on the task of compilation and includes neither
preprocessor, assembler, nor linker. Therefore it has
to be used in combination with a legacy compiler tool
chain. Since preprocessing, assembling and linking are
well-established stages there are no particular tool chain
requirements.

While early versions of CompCert were limited to
single-file inputs, CompCert now also supports separate
compilation [14]. It reads the set of preprocessed C files
emitted by the legacy preprocessor, performs a series of
code generation and optimization steps and emits a set
of assembly files enhanced by debug information.

CompCert generates DWARF2 debugging informa-
tion for functions and variables, including information
about their type, size, alignment and location. This also
includes local variables so that the values of all variables
can be inspected during program execution in a debug-
ger. To this end CompCert introduces a dedicated pass
which computes the live ranges of local variables and
their locations throughout the live range.

The generated assembly code can contain formal
CompCert annotations which can be inserted at the C
code level and are carried throughout the code genera-
tion process. This way, traceability information, or se-
mantic information to be passed to other tools can be
transported to the machine code level. Since they are
fully covered by the CompCert proof the information is



reliable and provides proven links between the machine
code and the source code level.

After assembling and linking by the legacy tool chain
the final executable code is produced. To increase con-
fidence in the assembling and linking stages CompCert
provides a tool for translation validation, called Valex,
which performs equivalence checks between assembly
and executable code (cf. Sec. 4.4).

4.1 Design Overview
CompCert is structured as a pipeline of 20 compilation
passes that bridge the gap between C source files and
object code, going through 11 intermediate languages.
The passes can be grouped in 4 successive phases:

Parsing Phase 1 performs preprocessing (using an
off-the-shelf preprocessor such as that of GCC), tok-
enization and parsing into an ambiguous abstract syn-
tax tree (AST), and type-checking and scope resolution,
obtaining a precise, unambiguous AST and producing
error and warning messages as appropriate. The LR(1)
parser is automatically generated from the grammar of
the C language by the Menhir parser generator, along
with a Coq proof of correctness of the parser [11].

C front-end compiler The second phase first re-
checks the types inferred for expressions, then deter-
mines an evaluation order among the several permitted
by the C standard. Implicit type conversions, opera-
tor overloading, address computations, and other type-
dependent behaviors are made explicit; loops are sim-
plified. The front-end phase outputs Cminor code. Cmi-
nor is a simple, untyped intermediate language featuring
both structured (if/else, loops) and unstructured con-
trol (goto).

Back-end compiler This third phase comprises 12
of the passes of CompCert, including all optimizations
and most dependencies on the target architecture. The
most important optimization performed is register allo-
cation, which uses the sophisticated Iterated Register
Coalescing algorithm [6]. Other optimizations include
function inlining, instruction selection, constant propa-
gation, common subexpression elimination (CSE), and
redundancy elimination. These optimizations imple-
ment several strategies to eliminate computations that
are useless or redundant, or to turn them into equivalent
but cheaper instruction sequences. Loop optimizations
and instruction scheduling optimizations are not imple-
mented yet.

Assembling The final phase of CompCert takes the
AST for assembly language produced by the back-end,
prints it in concrete assembly syntax, adds DWARF de-
bugging information coming from the parser, and calls
into an off-the-shelf assembler and linker to produce ob-
ject files and executable files. To improve confidence,
CompCert provides an independent tool, called Valex
(cf. Sec. 6), that re-checks the ELF executable file pro-
duced by the linker against the assembly language AST

produced by the back-end.

4.2 The CompCert Proof
The CompCert front-end and back-end compilation
passes are all formally proved to be free of miscompi-
lation errors; as a consequence, so is their composition.
The property that is formally verified is semantic preser-
vation between the input code and output code of every
pass. To state this property with mathematical precision,
we give formal semantics for every source, intermediate
and target language, from C to assembly. These seman-
tics associate to each program the set of all its possible
behaviors. Behaviors indicate whether the program ter-
minates (normally by exiting or abnormally by causing
a runtime error such as dereferencing the null pointer)
or runs forever. Behaviors also contain a trace of all ob-
servable input/output actions performed by the program,
such as system calls and accesses to “volatile” memory
areas that could correspond to a memory-mapped I/O
device.

To a first approximation, a compiler preserves seman-
tics if the generated code has exactly the same set of
observable behaviors as the source code (same termina-
tion properties, same I/O actions). This first approxima-
tion fails to account for two important degrees of free-
dom left to the compiler. First, the source program can
have several possible behaviors: this is the case for C,
which permits several evaluation orders for expressions.
A compiler is allowed to reduce this non-determinism
by picking one specific evaluation order. Second, a C
compiler can “optimize away” runtime errors present in
the source code, replacing them by any behavior of its
choice. (This is the essence of the notion of “undefined
behavior” in the ISO C standards.) As an example con-
sider an out-of-bounds array access:
int main(void)
{ int t[2];
t[2] = 1; // out of bounds
return 0;

}
This is undefined behavior according to ISO C, and
a runtime error according to the formal semantics of
CompCert C. The generated assembly code does not
check array bounds and therefore writes 1 in a stack
location. This location can be padding, in which case
the compiled program terminates normally, or can con-
tain the return address for ”main”, smashing the stack
and causing execution to continue at PC 1, with unpre-
dictable effects. Finally, an optimizing compiler like
CompCert can notice that the assignment to t[2] is
useless (the t array is not used afterwards) and remove
it from the generated code, causing the compiled pro-
gram to terminate normally.

To address the two degrees of flexibility mentioned
above, CompCert’s formal verification uses the follow-
ing definition of semantic preservation, viewed as a re-
finement over observable behaviors:



Definition 1 (Semantic preservation) If the compiler
produces compiled code C from source code S, with-
out reporting compile-time errors, then every observ-
able behavior of C is either identical to an allowed be-
havior of S, or improves over such an allowed behavior
of S by replacing undefined behaviors with more defined
behaviors.

The semantic preservation property is a corollary of
a stronger property, called a simulation diagram that re-
lates the transitions that C can make with those that S
can make. First, the simulation diagrams are proved
independently, one for each pass of the front-end and
back-end compilers. Then, the diagrams are com-
posed together, establishing semantic preservation for
the whole compiler. The proofs are very large, owing
to the many passes and the many cases to be consid-
ered - too large to be carried using pencil and paper. We
therefore use machine assistance in the form of the Coq
proof assistant. Coq gives us means to write precise,
unambiguous specifications; conduct proofs in interac-
tion with the tool; and automatically re-check the proofs
for soundness and completeness. We therefore achieve
very high levels of confidence in the proof. At 100,000
lines of Coq and 6 person-years of effort, CompCert’s
proof is among the largest ever performed with a proof
assistant.

4.3 Proving the Absence of Runtime Er-
rors

In safety-critical systems, the use of dynamic memory
allocation and recursions is typically forbidden or only
used in limited ways. This simplifies the task of static
analysis such that for safety-critical embedded systems
it is possible to formally prove the absence of runtime
errors, or report all potential runtime errors which still
exist in the program. Such analyzers are based on
the theory of abstract interpretation [4], a mathemati-
cally rigorous formalism providing a semantics-based
methodology for static program analysis. Abstract in-
terpretation supports formal correctness proofs: it can
be proved that an analysis will terminate and that it is
sound, i.e., that it computes an over-approximation of
the concrete semantics. If no potential error is signaled,
definitely no runtime error can occur: there are no false
negatives. If a potential error is reported, the analyzer
cannot exclude that there is a concrete program execu-
tion triggering the error. If there is no such execution,
this is a false alarm (false positive). This imprecision
is on the safe side: it can never happen that there is a
runtime error which is not reported.

One example of a sound static runtime error analyzer
is the Astrée analyzer [20, 15]. It reports program de-
fects caused by unspecified and undefined behaviors ac-
cording to the C norm (ISO/IEC 9899:1999 (E)) [9],
program defects caused by invalid concurrent behavior,
violations of user-specified programming guidelines,
and computes program properties relevant for functional

safety. Users are notified about: integer/floating-point
division by zero, out-of-bounds array indexing, erro-
neous pointer manipulation and dereferencing (buffer
overflows, null pointer dereferencing, dangling point-
ers, etc.), data races, lock/unlock problems, deadlocks,
integer and floating-point arithmetic overflows, read ac-
cesses to uninitialized variables, unreachable code, non-
terminating loops, violations of optional user-defined
static assertions. Astrée also provides a module for
checking coding rules, called RuleChecker, which sup-
ports various coding guidelines (MISRA C:2004 [22],
MISRA C:2012 [21], ISO/IEC TS 17961 [10], SEI
CERT C [2, 3], CWE [24]), computes code metrics and
checks code metric thresholds. RuleChecker is also
available as a standalone product, but when used in
combination with Astrée it can access the results of the
sound static runtime analysis and, hence, can achieve
zero false negatives even on semantic rules.

4.4 Translation Validation
Currently the verified part of the compilation tool chain
ends at the generated assembly code. In order to bridge
this gap we have developed a tool for automatic transla-
tion validation, called Valex, which validates the assem-
bling and linking stages a posteriori.

Figure 3: Translation Validation with Valex

Valex checks the correctness of the assembling and
linking of a statically and fully linked executable file
PE against the internal abstract assembly representa-
tion PA produced by CompCert from the source C pro-
gram PS. The internal abstract assembly as well as the
linked executable are passed as arguments to the Valex
tool. The main goal is to verify that every function
defined in a C source file compiled by CompCert and
not optimized away by it can be found in the linked
executable and that its disassembled machine instruc-
tions match the abstract assembly code. To that end,
after parsing the abstract assembly code Valex extracts
the symbol table and all sections from the linked ex-
ecutable. Then the functions contained in the abstract
assembly code are disassembled. Extraction and dis-
assembling is done by two invocations of exec2crl, the
executable reader of aiT and StackAnalyzer [1]. Apart
from matching the instructions in the abstract assembly
code against the instructions contained in the linked ex-
ecutable Valex also checks whether symbols are used
consistently, whether variable size and initialization data
correspond and whether variables are placed in the right
sections in the executable.

Currently Valex can check linked PowerPC executa-
bles that have been produced from C source code by
the CompCert C compiler using the Diab assembler and



linker from Wind River Systems, or the GCC tool chain
(version 4.8, together with GNU binutils 2.24).

5 Integration and Performance
Integration The ECU control software uses a limited
set of timing interrupts which does not impair worst-
case execution time estimations. The traditional com-
piler accepts pragma indications to flag C-functions so
they can be called immediately from an interrupt vec-
tor. The compiler then adds code for saving the system
state and more registers than used in a standard Pow-
erPC EABI function call.

CompCert does not accept this compiler-dependent
pragma nor inline assembly so the user must hand-code
the mechanism outlined in the previous paragraph in as-
sembler language in separate assembly files. Such as-
sembler code can be placed in the runtime environment
module. Some system state recovery contained in a fall-
back exception handler is also transferred to the runtime
environment.

The strategy of using a minimum sufficient subset as
discussed in Sec. 2 above is fully confirmed since only
one related change to the source code was necessary.
For more than five years CompCert has fully covered the
chosen range of constructs even during earlier phases of
its development.

Behaviors undefined according to the C semantics are
not covered by the formal correctness proof of Comp-
Cert. Only code that exhibits no numeric overflows, di-
vision by zero, invalid memory accesses or any other
undefined behavior can possibly be functionally cor-
rect. The sound abstract interpretation based analyzer
Astrée can prove the absence of runtime errors includ-
ing any undefined behaviors [18, 19]. Therefore we use
Astrée to complement the formal correctness argument
of CompCert.

Further minor modifications were necessary to adapt
the build process to the CompCert compiler options.
Also the linker control file required some changes since
CompCert allocates memory segments differently from
some traditional popular compilers.

In the final step an MTU specific flashing tool as-
signs code, constant data as well as initialized and non-
initialized data as required by the C runtime environ-
ment specific to the target architecture.

Testability Testing functional behaviour on the target
platform can be tedious. Potentially concurrent software
interacts with hardware which does not necessarily be-
have according to the synchronous paradigm. The hard-
ware in turn interacts with the noise charged physical
environment. In addition some of that interaction only
works properly under hard real time restrictions. Thus
typical module or software tests in the target environ-
ment suffer from the necessity to impose severe restric-
tions on the behaviors expected in reality.

It is thus desirable to test software components reach-

ing a maximum coverage of real world interaction noise.
If such components are specified to expose defined

complete and non contradicting behaviour on their
boundaries and are written as generically as possible,
abstract testing comes into reach. Generic behaviour
does not depend on underlying processor properties
such as endianness and hardware register allocation. On
the compiler side it does not depend on compiler spe-
cific or undefined behaviour. Coding guidelines and ar-
chitectural constraints may ensure compliance with such
rules.

If software artifacts comply with these constraints
they may be tested independently from hardware and
specific compilation tool chain. CompCert is available
for ARM, x86 and PowerPC architectures so that prop-
erties acquired on one platform hold on the other.

Code Performance The code generated by CompCert
was subjected to the Valex tool and shows no indica-
tions of incompliance. The generated code was inte-
grated into the target hardware and extensively tested in
a simulated synthetic environment which is a precon-
dition to using the integrated system on a real engine.
If simulator test and engine test are passed they jointly
provide behavioral validation coverage of every aspect
of the functional system requirements.

300

600

900

1200

1500

1800

2100

-41%

Syn
ch

ron
ou

s

fun
cti

on

-19%

Int
err

up
t

mod
e #1

-21%

Int
err

up
t

mod
e #2

-22%

Int
err

up
t

mod
e #3

-28%

W
CRT

WCET(µs)

CompCert

Conventional compiler

Figure 4: WCET estimates for MTU application

All building processes were completed successfully;
all functional tests passed. Thus these tests – on an
admittedly minimized and robust language subset – ex-
posed no indication of compiler flaws.

To assess the performance of the CompCert compiler
further we have investigated the size and the worst-case
execution time of the generated code.

To determine the memory consumption by code and
data segments we have analyzed the generated binary
file. Compared to the conventional compiler the code
segment in the executable generated by CompCert is
slightly smaller. The size of the data segment size is
almost identical in both cases. These observations are
consistent with our expectations since in CompCert we
have used more aggressive optimization settings. The
traditional compiler was configured not to use any opti-



mization to ensure traceability and to reduce functional
risks introduced by the compiler itself during the opti-
mization stage.

200

400

600

800

-50%

Syn
ch

ron
ou

s

fun
cti

on

-18%

Int
err

up
t

-39%

Tota
l

Bytes
CompCert

Conventional compiler

Figure 5: Worst-case stack usage for MTU application

With the verified compiler CompCert at hand the de-
sign decision was made to lift this restriction. CompCert
performs register allocation to access data from regis-
ters and minimizes memory accesses. In addition, as
opposed to the traditional compiler it accesses memory
using small data areas. That mechanism lets two regis-
ters constantly reference base memory addresses so that
address references require two PowerPC assembler in-
structions instead of three as before.

The maximum execution time for one computational
cycle is assessed with the static WCET (worst-case ex-
ecution time) analysis tool aiT [17]. When configured
correctly this tool delivers safe upper execution time
bounds. All concurrent threads are mapped into one
computation cycle under worst-case conditions. The
precise mapping definition is part of the architectural
software design on the bare processor.

Analyses are performed on a normal COTS PC, each
entry (synchronous function, interrupt) has been ana-
lyzed separately. Analysis of timing interrupt is split
in several modes, and finally, the WCRT (worst-case re-
sponse time) for one computational cycle is calculated.
The results for the MTU application are shown in Fig. 4.
The computed WCET bounds lead to a total processor
load which is about 28% smaller with the CompCert-
generated code than with the code generated by the con-
ventional compiler. The main reason for this behaviour
is the improved memory performance. The result is con-
sistent with our expectations and with previously pub-
lished CompCert research papers.

We have also determined a safe upper bound of the
total stack usage in both scenarios, using the static an-
alyzer StackAnalyzer [13]. The results are shown in
Fig. 5. When providing suitable behavioral assump-
tions about the software to the analyzer the overall
stack usage is around 40% smaller with the CompCert-
generated code than the code generated by the conven-
tional compiler.

6 Tool Qualification
MTU’s qualification strategy is built on three columns,
namely providing evidence of a structured tool devel-
opment, sufficient user experience, and confirmation of
reliable operation via validation (cf. Sec. 3 and Fig. 2).
This strategy has also been applied to qualify CompCert
for use within a highly safety-critical application.

Compilation As described in Sec. 4 all of CompCert’s
front-end and back-end compilation passes are formally
proved to be free of miscompilation errors. These for-
mal proofs bring strong confidence in the correctness of
the front-end and back-end parts of CompCert. These
parts include all optimizations – which are particularly
difficult to qualify by traditional methods – and most
code generation algorithms.

The formal proof does not cover some elements of
the parsing phase, nor the preprocessing, assembling
and linking (cf. [19]) for which external tools are used.
Therefore we complement the formal proof by applying
a publically available validation suite.

The overall qualification strategy for CompCert is de-
picted in Fig. 6. In contrast to validating the correlation
of source files and the resulting fully linked executable
file, qualification of the compiler toolchain is split in
three phases: traditional testsuite validation, formal ver-
ification, and translation validation.

Preprocessor Source-code preprocessing is mandated
to a well-used version of gcc. The selected version
is validated using a preprocessor testsuite, for which
the correlation to the used language subset is manually
proven. MTU uses strict coding rules limiting the use of
C-language [?] constructs to basic constructs known to
be widely in use. Also usage of C preprocessing macros
is limited by these rules to very basic constructs. The
testsuite is tailored to fully cover these demands.

It must be ensured that source files and included
header files only use a subset of the features which are
validated by the above procedure. This may be accom-
plished by establishing a suitable checklist and manu-
ally applying it to each and every source file.

Effort may however be reduced and the reliability of
that process be vastly improved if a coding guideline
checker is used. That tool must again be validated to
provide alarms for every violation of any required rule.

As described above Astrée includes a code checker,
called RuleChecker, which analyzes each source file
for compliance with a predefined set of rules, includ-
ing MISRA:2004 [22]. It also provides a Qualification
Support Kit and Qualification Software Life Cycle Data
reports which facilitate the tool qualification process.

Assembling and Linking Cross-assembling and
cross-linking is also done by gcc. To complement the
proven-in-use argument and the implicit coverage by
the validation suite we use the translation validation
tool Valex shipped with CompCert which provides



Testsuite validation Formal verification Translation validation

(.c/.h) Files

Preprocessing
gcc

(.i) Files

Compilation
CompCert

(.s) Files

(.json) Files

Runtime Error
Analysis
Astrée

Assembling /
Linking
gcc

(.elf) File

Validation
Valex

Validation
Report

Validation
RuleChecker

MTU
Coding
Rules

Verification
&

Compliance
Report

Figure 6: CompCert qualification

additional confidence in the correctness of assembler
and linker. Each source file is compiled with CompCert
using a dedicated option, s.t. CompCert is instructed to
serialize its internal abstract assembly representation
in JSON format [12]. The generated .json-files as
well as the fully linked executable are then passed to
the Valex tool. As described in Sec. 4.4 Valex checks
the correctness of the assembling and linking of the
executable file against the internal abstract assembly
representation produced by CompCert.

Tools used in the process of qualifying CompCert,
namely Astrée and Valex, are also qualified using the
qualification strategy described above. By dividing the
qualification of CompCert into steps and applying strict
coding rules throughout the development, complexity of
compiler qualification tremendously decreases making
use of CompCert feasible also within a highly safety-
critical industrial application.

7 Conclusion

CompCert is a formally verified optimizing C compiler:
the executable code it produces is proved to behave
exactly as specified by the semantics of the source C
program. This article reports on practical experience
obtained at MTU with replacing a non-verified legacy
compiler by CompCert for a highly critical control soft-
ware of an emergency power generator. We have de-
scribed the necessary steps to integrate CompCert in the
development process, and outlined our tool qualification
strategy. The main benefits are higher confidence in the
correctness of the generated code, and significantly im-
proved system performance.

References
[1] AbsInt GmbH, Saarbrücken, Germany. AbsInt Advanced

Analyzer for PowerPC, April 2016. User Documenta-
tion.

[2] CERT – Software Engineering Institute. SEI CERT C
Coding Standard – Rules for Developing Safe, Reliable,
and Secure Systems. Carnegie Mellon University, 2016.

[3] CERT – Software Engineering Institute, Carnegie Mel-
lon University. SEI CERT Coding Standards Website.

[4] P. Cousot and R. Cousot. Abstract interpretation: a uni-
fied lattice model for static analysis of programs by con-
struction or approximation of fixpoints. In 4th POPL,
pages 238–252, Los Angeles, CA, 1977. ACM Press.

[5] E. Eide and J. Regehr. Volatiles are miscompiled, and
what to do about it. In EMSOFT ’08, pages 255–264.
ACM, 2008.

[6] L. George and A. W. Appel. Iterated register coalescing.
ACM Trans. Prog. Lang. Syst., 18(3):300–324, 1996.

[7] IEC 60880. Nuclear power plants instrumentation and
control systems important to safety software aspects for
computer-based systems performing category a func-
tions, 2006.

[8] IEC 61508. Functional safety of electri-
cal/electronic/programmable electronic safety-related
systems, 2010.

[9] ISO. International standard ISO/IEC 9899:1999, Pro-
gramming languages – C, 1999.

[10] ISO/IEC. Information Technology – Programming Lan-
guages, Their Environments and System Software Inter-
faces – Secure Coding Rules (ISO/IEC TS 17961), Nov
2013.

[11] J.-H. Jourdan, F. Pottier, and X. Leroy. Validating LR(1)
parsers. In ESOP 2012: 21st European Symposium on
Programming, volume 7211 of LNCS, pages 397–416.
Springer, 2012.



[12] The JSON Data Interchange Format. Technical Re-
port Standard ECMA-404 1st Edition / October 2013,
ECMA, Oct. 2013.

[13] D. Kästner and C. Ferdinand. Proving the Absence of
Stack Overflows. In SAFECOMP ’14: Proceedings of
the 33th International Conference on Computer Safety,
Reliability and Security, volume 8666 of LNCS, pages
202–213. Springer, September 2014.

[14] D. Kästner, X. Leroy, S. Blazy, B. Schommer,
M. Schmidt, and C. Ferdinand. Closing the gap – the
formally verified optimizing compiler CompCert. In
SSS’17: Developments in System Safety Engineering:
Proceedings of the Twenty-fifth Safety-critical Systems
Symposium, pages 163–180. CreateSpace, 2017.

[15] D. Kästner, A. Miné, L. Mauborgne, X. Rival, J. Feret,
P. Cousot, A. Schmidt, H. Hille, S. Wilhelm, and C. Fer-
dinand. Finding All Potential Runtime Errors and Data
Races in Automotive Software. In SAE World Congress
2017. SAE International, 2017.

[16] D. Kästner, A. Miné, A. Schmidt, H. Hille,
L. Mauborgne, S. Wilhelm, X. Rival, J. Feret, P. Cousot,
and C. Ferdinand. Finding All Potential Run-Time
Errors and Data Races in Automotive Software. In
Proceedings of the SAE World Congress 2017 (SAE
Technical Paper). SAE International, 2017.

[17] D. Kästner, M. Pister, G. Gebhard, M. Schlickling, and
C. Ferdinand. Confidence in Timing. Safecomp 2013
Workshop: Next Generation of System Assurance Ap-
proaches for Safety-Critical Systems (SASSUR), Septem-
ber 2013.

[18] D. Kästner, S. Wilhelm, S. Nenova, P. Cousot, R. Cousot,
J. Feret, L. Mauborgne, A. Miné, and X. Rival. Astrée:
Proving the Absence of Runtime Errors. Embedded Real
Time Software and Systems Congress ERTS 2, 2010.

[19] X. Leroy, S. Blazy, D. Kästner, B. Schommer, M. Pis-
ter, and C. Ferdinand. CompCert - A Formally Verified
Optimizing Compiler. In ERTS 2016: Embedded Real
Time Software and Systems, 8th European Congress,
Toulouse, France, Jan. 2016. SEE.

[20] A. Miné, L. Mauborgne, X. Rival, J. Feret, P. Cousot,
D. Kästner, S. Wilhelm, and C. Ferdinand. Taking Static
Analysis to the Next Level: Proving the Absence of Run-
Time Errors and Data Races with Astrée. Embedded
Real Time Software and Systems Congress ERTS2, 2016.

[21] MISRA Working Group. MISRA-C:2012 Guidelines for
the use of the C language in critical systems. MISRA
Limited, Mar. 2013.

[22] Motor Industry Software Reliability Association.
MISRA-C: 2004 – Guidelines for the use of the C
language in critical systems, 2004.

[23] NULLSTONE Corporation. NULLSTONE for C.
http://www.nullstone.com/htmls/ns-c.
htm, 2007.

[24] The MITRE Corporation. CWE – Common Weakness
Enumeration.

[25] X. Yang, Y. Chen, E. Eide, and J. Regehr. Finding and
understanding bugs in C compilers. In PLDI ’11, pages
283–294. ACM, 2011.

http://www.nullstone.com/htmls/ns-c.htm
http://www.nullstone.com/htmls/ns-c.htm

	Title
	Introduction
	The Application
	The Past: Using a Non-Verified Compiler
	The CompCert Compiler
	Design Overview
	The CompCert Proof
	Proving the Absence of Runtime Errors
	Translation Validation

	Integration and Performance
	Tool Qualification
	Conclusion

