
Post Pass Code
Compaction at the
Assembly Level for
C16x

Page 35

by Christian Ferdinand
AbsInt Angewandte Informatik GmbH

http://www.AbsInt.com
ferdinand@AbsInt.com

aiPop166 post pass

optimizer suite was

developed to reduce code

size and improve the

code quality of assembly

files produced by

Tasking’s C compiler

for C16x.

The size of compiled C code is becoming
increasingly important in embedded sys-
tems, where the economic incentives to
reduce ROM sizes are often very compelling.
By combining advanced static program
analysis methods and pattern matching tech-
niques it is possible to reduce the code size
of programs, while preserving the ability to
run the program executable directly, i.e.
without an intervening decompression stage.

In recent years there has been an increasing
trend towards using microcontrollers in a
wide variety of consumer and industrial
products. However, the amount of available
memory is limited due to price, space,
weight, power consumption etc. At the same
time, there is also a growing desire for
enhanced functionality in these products,
this implying increasing amounts of code.
Unfortunately, slight increases in code size
can lead to high additional costs, e.g. when
having to switch from on-chip memory to off-
chip memory or add additional flash memory
(currently expensive). In the worst case con-
siderable effort and expense might have to
be invested in migrating to another micro-
controller model. Tools for reducing code
size help to save considerable time and
money. This is where the aiPop166 post pass
optimizer suite comes in, as it was developed
to reduce code size and improve the code
quality of assembly files produced by
Tasking’s C compiler for C16x.

An optimizing compiler usually works like
this: The input program is read, checked for
syntax errors, and transformed into an inter-
mediate representation (IR). At the IR level
a set each of target-architecture-dependent
and -independent optimizations is per-
formed. Code selection, register allocation
and, depending on the target architecture,
instruction scheduling are the tasks of the
compiler back-end transforming the IR into

assembly code. The code quality and code
density of modern optimizing C compilers on
regular architectures is usually quite high.
Nevertheless, by using a post pass approach
that works on the resulting assembly files, it
is often possible to reduce code size consid-
erably. There are basically two reasons why a
post pass optimizer is able to achieve this:

1. Larger scope: For complexity reasons,
compilers can only consider (and optimize)
a small part of an input program at a time.
Yet in a post pass approach the scope can be
much larger, e.g. an entire procedure, mod-
ule or even the entire application.
2. Lower level: Most compiler optimizations
work at the IR level. However, additional
gains can be made by reapplying the same
optimizations to the lower assembly level,
this applying in particular to target-architec-
ture-dependent optimizations.

The following sections provide details of the
optimizations performed by aiPop166.

Page 36

Functional Abstraction and Tail Merging
The underlying idea of functional abstrac-
tion and tail merging is to:
1. identify multiple occurrences of instruc-
tion sequences,
2. make one representative sequence that
can be used in place of all the other occur-
rences, and
3. have the optimized program use the rep-
resentative instead of the occurrence. This
optimization is referred to as functional
abstraction if it is achieved by a function call
or tail merging if it is achieved by a jump
from one procedure into another.

Example
Consider the following code sequences:

CALL _strcpy_x
MOV R12,#06h
ADD R12,R0
AND R12,#03FFFh
MOV R13,DPP1
MOV R14,#POF _10
...
MOV [R0+#04H],R6
MOV R12,#06h
ADD R12,R0
AND R12,#03FFFh
MOV R13,DPP1
MOV R14,#025h

The repeated code sequence can be extract-
ed into a procedure (functional abstraction).
This transformation reduces the code size:

_aipop166_bb_43f PROC FAR
MOV R12,#06h
ADD R12,R0
AND R12,#03FFFh
MOV R13,DPP1
RETS

CALL _strcpy_x
CALL _aipop166_bb_43f
MOV R14,#POF _10
...
MOV [R0+#04H],R6
CALL _aipop166_bb_43f
MOV R14,#025h

Interprocedural Constant Propagation at
the Assembly Level
For many microcontrollers using large con-
stant values (e.g. absolute addresses of vari-
ables or code, bit patterns, ...) inflates code
size. In the C16x, for example, access to
memory via indirect addressing using a regis-
ter requires a 2-byte instruction whereas
using the absolute address requires a 4-byte
instruction. Consequently, 2 bytes can be
saved by replacing a move instruction con-
taining an immediate value that has already
been loaded into a register by a register-to-
register move instruction.

Optimizations Based on Data Dependency
Analysis
Due to the semantics of C, a compiler often
generates instructions whose result is never

used or it generates instructions for loading
data that has already been loaded. In addi-
tion,statements whose results are never used
are to be found at the C program level as
well. However, it is usually quite hard for a
compiler to identify such instructions due to
its more local view. aiPop166 employs a pro-
cedure-wide data dependency analysis to
remove such unnecessary instructions.

EXTP Optimizations for FAR Data
Access to FAR data on the C16x is quite
expensive due to its 16-bit architecture.
When an application is migrated from small
memory model to large memory model code
is usually observed to grow considerably.
Each access to FAR data usually requires an
additional instruction to set a DPP register
to the correct page address or an EXTP
instruction, this having an effect similar to
setting a DPP register locally.

aiPop166 uses heuristics based on two inter-
procedural analyses that try to change the
settings of DPP registers and EXTP instruc-
tions so that a DPP value can be reused.

Peephole Optimizations
Apart from the optimizations mentioned
above, aiPop166 includes a set of simple opti-
mizations to reduce code size and improve
execution speed, e.g. removing unused pro-
cedures, empty procedures, unnecessary
NOP instructions and zero-displacement
jumps, in addition to performing tail-call
optimizations.

Speed vs. Size
Functional abstraction and tail merging
result in a runtime penalty due to the addi-
tional CALLS/RETS or JUMP instructions.
aiPop166 enables a tradeoff between speed
and size. By sacrificing the compaction rate
very slightly the overall runtime overhead
can be kept low by only extracting code
sequences of a given minimum size. Using
pragmas enables timing-critical parts of the
application to be excluded from any opti-
mization that might result in slower execu-
tion or from any optimization at all.

Integration in the Development Cycle
Functional abstraction and tail merging
work best when applied to the entire appli-
cation. However, applying global optimiza-
tion for each step in the development
process (compile-test-debug-change) can be
very time-consuming. aiPop166 enables com-
plete reanalysis of the application code to be
avoided as it takes advantage of the circum-

stance that an application usually changes
only very moderately over time. During the
learning phase, aiPop166 collects informa-
tion from the entire application code on
repeated code sequences worth extracting.
On small applications (say 64 KB of code seg-
ment size) this may take a few minutes,
whereas on large applications (> 1 MB of
code segment size) this may take a few
hours. This information is stored in a data-
base file. This database file is later used dur-
ing the optimization phase to extract repeat-
ed occurrences of code sequences. Using this
pre-computed information enables the scope
of the optimization phase to be restricted to
one module (.c file). Result: The optimiza-
tion phase is fast, thus enabling invocation of
aiPop166 to be integrated in the makefile
controlling compilation of the application.

The compaction rate drops slightly over time
as the application code changes. When the
application code has changed considerably
and the compaction rate has dropped under
an acceptable limit, the learning phase can
be restarted. As an alternative, the learning
phase can be invoked regularly on weekends,
at night or during lunchbreaks.

Debugging
aiPop166 leaves most of the symbolic debug
information intact. Nevertheless, this infor-
mation has to be omitted for extracted pro-
gram parts. Since the extracted program
parts are usually only a few instructions long,
source-level debugging is influenced only
slightly. In addition, extraction optimization
can be temporarily switched off for the pro-
gram parts in question.

Compaction Rates
aiPop166 has been tested with several real
applications, with size reductions over 66%
having been observed for specific modules.
Testing of entire reference customer applica-
tions has shown an overall size reduction of
between 4.8% (small application featuring
highly hand-optimized C code) and 20.39%
(large mobile phone application). A reduc-
tion of 20% means that 25% more code and
functionality can be packed into a flash
memory of the same size.

Supported Compilers and Platforms
aiPop166 optimizes assembly files in .src for-
mat produced from regular C files by
Tasking’s C compiler for C16x. It is available
for Solaris, Linux and Windows NT.

❏

